Rex = (Ux) /v; Pr, Prandtl criterion; x, y, axial and normal coordinates; r, heat of vapor formation; Cp:
specific heat; y, stream function. Indices; R, axis; e, evaporator; 0, evaporation surface; t, heat conduc-
tion.
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ACTIVATION OF VAPORIZATION CENTERS. I*

V. S. Novikov UDC 536.243

The influence of dissolved gases on the formation of a vapor~bubble nucleus of critical dimen-
sions is considered. A mathematical model is proposed for the subsequent evolution of the nu-
cleus; it gives a correct description of the growth of the vapor bubble uptothe instant at which
it is detached from the wall. “

Even after allowing for the temperature dependence of the surface tension o and molecular heat of vapor-
ization A, the theory of heterophase fluctuations [1] leads [2] to values of the degree of superheating required
to vaporize liquids roughly twice as great as those measured experimentally. Harvey [3] noted that micro-
scopic gas nuclei might survive in the indentations of rough, unwetted solid surfaces, causing liquids to boil
at very slight superheatings. The idea of micronuclei constitutes the basis for the theory of the deactivation
of indentations proposed by Holz and Singer and set out in [4]. It follows from [5, 6] that stable gas micro-
nuclei are absent inthecase of organic liquids. For these, as well as for liquid metals which wet adjacent
solid surfaces almost completely [4], the deactivation theory cannot explain the fact of early boiling., A new
physical model was proposed in [2, 7] for the initial stage of phase transformations in liquids; this model may
help in explaining the boiling of organic liquids and molten metals., According to [2, 7], complexes of several
vapor molecules formed as a result of the superheating of the boundary layer of liquid are adsorbed in inden-
tations on the surface, forming nuclei of greater than critical size. This paper is a continuation of [2, 7] and
considers the influence of dissolved gases on the boiling of liquids, as well as formulating a mathematical
model for the further evolution of the nucleus,

One of the reasons for the formation of gas micronuclei on a solid surface is the adsorption of gas dis-
solved in the liquid on surface indentations. Let us consider an indentation of conical shape with a depth z,
and a base radius r,. The number Ny of gas molecules adsorbed in the indentation is determined by the ad-
sorption isotherm derived in [7, 8], which has the following form for a conical indentation:

[ B
venryP V'ri + 22 [1— (—§—> ] exp ( v )
. 0

N, = P 3 RC v . Q)
=t v 1 (L) e ()]
(= ey e[ (5 oo 5]
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Here (1/g) = vng (21rm0kT)1/2; 8 = zy/dy; Pand T are the pressure and temperature of the liquid; ng is the
number of adsorption centers on unit area of the surface of the indentation; k is Boltzmann's constant;

v exp [—(L/kT)] is the desorption velocity constant [9]; d, is the average distance between adsorbed mole~

cules of mass my; P,is the saturated vapor pressure of the liquid at temperature T; ¥ = —& (ry, 2y,

d){d__.i /o2 * The potential energy ®(r,, z;, d) of a molecule adsorbed at a distance d from the tip of the cone
may be found by making use of the Mie dispersion-interaction potential Uth) = Ah™@ — Bh™™' (@' =9, m' =
6, h? =r? + z?) onthe basis of Eqs. (1) and (2) of [7]. After these calculations we obtain

s 1 .3 iz
D (rg, 20 d)=—-—1§ noB[':i?<l+fb2'(—Ew)——rg,—}’ @)
where n, is the number of molecules in unit volume of the material of the solid wall; b =1}/ (c} + z§); w=
fo +arctanf; f=zy/r,. The coefficiert y from (1) is the probability that gas molecules will collide with
the surface of the indentation; it may be found from the kinetic interpretation of the Henry law:

/[ e !
m'n'kTem '/2\ kT ) € _
P, =N, | ———2 ——— | =NF(T .
5= o ) L exp( kT) NE(T), ®

where Ng is the molecular concentration of the dissolved gas; p is the reduced mass of the liquid —gas
system; ¢ is the energy required to bring a gas molecule out of solution; 2s is the number of quadratic
terms in the sum used to represent the energy of the molecules; m' and n' are the power indices of the
Mie potential. Allowing for (3) vy = [Pg/NF(T)] (N is the total number of molecules per unit volume of the
solution),

In an unwetted indentation on 2 rough surface, the pressure Py, of the adsorbed gas (or gas — vapor
mixture) is smaller than the pressure of the liquid by an amount depending on o, the radius of the menis~
cus ry, the wetting angle ®;, and the aperture angle of the indentation 20, (see [4]), i. €., Py = P -
[20lcos (8 — aq)l/ri]. The height z; (reckoned from the vertex of the conical depression) to which the de-
pression is filled with gas may be found from the relation t/9)miey 2g)? 28 = (Ng/ Lo) (P V4T /Pp¢Ty), where
Ly=2.7- 10'? is the number of molecules occurring under normal conditions (P, Ty) in a volume of gas
V; =1 cm® (Loschmidt number). :

On heating the boundary layer of liquid from T to the saturation temperature T; corresponding to
the pressure P, the adsorbing capacity of the indentation, i.e., Na, diminishes, This is taken into account
by substituting T = TZ into Na and y. However, in addition to this, as T rises the solubility of the gas
will diminish, and the excess of gas will pass into the space above the liquid to the relative extert 0 <@ <1
being trapped in the indentations to the extent 1 — ¢, so increasing the number and volume of the gas
bubbles already present inthese. (An analogous situation arises on the walls of a bottle containing alco-~
hol.) This not only eases the boiling of the liquids, but also'increases the intensity of heat transfer by 50%
(on account of the growth of the vaporization centers) when boiling under conditions of free convection [10,
11]. The increment to Na(TJ) associated with the reduction in the solubility of the gas (on the assumption
that Pg = constant) is

[+]
AN, — (l—-q))Pg[ 8 _5' dx ]
Ning F(Ty FIT (x, t,)]
T(x, &) =T, + ©(x, t,). ! 4

Here Nijpd is the number of indentations per unit area of the rough solid surface, 6 is the thickness of the
layer of liquid, while &(x, t) is given by (8). Inadditiontothis, over the period t, required for heating

the boundary layer of liquid from T,to T¢ , a certain number molecules ANp will pass into the micronucleus
through its interface with the liquid as a result of evaporation, This will be established below,

The temperature field in the liquid depends on the intensity of the convective currents excited in the
liquid. For natural turbulent convection we may infroduce a coefficient of effective thermal conductivity

2] _
/ 0.55 1/3
A (x, ©) = 0.073 AO(V_) (Eg_> " s = Mo/, o)
a,

2
o v

if the x axis is directed along the normal to the lower solid heating wall. The parameters in Eq. (5) were
defined in [12]. ILet us suppose that at x = 6 the temperature of the liquid is held constant and equalto T,

264



{in °K), i.e,, we shall consider an underheated liquid, while at x = 0 a constant thermal flux g, is supplied
to the latter. The solution of the nonlinear problem

99 _ M 9 [ g a_@)’ O, =T )—T,,
ot cp Ox d0x
_x<a_e) — gy O, =0, B(x, 0)=0 (6)
ax x=0 .

may be obtained if A #*(x, @) is expressed in the form (1/2)M6®y3 — Mx:2(®), where Gg =T& — T, and 2(9)
is a nonlinear function. In order to linearize the equation, inthe term MxQ (®) we may use the function 8,
derived from a solution of the problem with Q (®) = 0. Applying a Laplace transformation with respect to
fime we find that

8 w1 (=

oy~ G0 |2 _
0, (%, t)—}»—o{‘g (6 — x) r RN
n=0 v

a@u+nz J. [ @4+ De—2x } _ b mee” 7
Xexp[‘W—t i T [ - @

Substituting @, into 2(®) we arrive at a linear equation with a source H(x, t) = (M/cp)(9/0x)[x:2(®,) (08,/0x)].
The solution subject to the boundary conditions in (6) is
t L] 7 .
6(x, 1) :jdt YH(xO, 1) G (xy; x, i—7) dixy - 70 g dTG (0; x, { — ), " (8)
¥ o 0 &
where G is the Green's function of a mixed boundary problem of the first and second kinds. For small time
values

e e L Ny fexn [ G ][ XY
G t)_zy’n“af“n =1 {eXP[ 4at } eXP[ 4at ]} )

Here x* =x, + (2n — 1)6, while for large F = (at/6%

% 272 ,
G(xy %, 8) = %E (— rexp [__ (2n—: 1)’n Fo} sin (2n «Z@Unx_o sin (2n Z‘Sl)mc . (10)

n=0

An analogous solution may be obtained for the problem in which the thermal flux oy is specified on the
boundary x = 8, and also for that in which g; and g; are specified in the form of arbitrary functions of t,
The evolution of the bubble after separation from the wall depends very considerably on the form of the
boundary conditions.

From Eq. (8) we find the value of t, for which T, + 8(0, ty) = T&. Thus,

I o

2 ;

AN, = nzf(i) j‘dt—llN—r_mLPD"—)“- eexp (—— © )de, (11
2 myw (kT*) / . kT*

A

where a Maxwell function is used as the energy distribution function of the molecules in the liquid (the num-
ber per unit volume being N); T=x &) =T, + @(0, t); r is the reflection coefficient; 71,(Pyq) is the condensa-
tion coefficient; A is the molecular heat of vaporization; m; is the mass of the liquid molecule. After
certain calculations we obtain
2 4 /
AN, () =41/ 7 22Ny (o) —— (L) VE Y VT (- l)exp (—i) . a2)
P kT kT

my \ 2 * %

Thus, at the instant of time t; in an indentation of depth z, we find Ny(zg, ty) = Na(Tg) + ANg + AN, gas and
vapor molecules occupying a height z, = [(3/ w)(zo/ro)z(PiviTs Ny/ LT Pyy) /3, onthe assumption that ®; and
1y have not varied up to the moment t;. Since the depths of the indentations obey a Gauss distribution with
a dispersion 0%, the number of potential centers of vaporization activated at the instant t;is deter mined by
the relation
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Nind [z ) 1 2 2
n= 19| exp(—-2 Vdzy= — Nipd @ —2= | —@ [ 211,
Op Van j* P k 20, " lnd[ (GOV 2 ) (Uo ‘/g)] (13)
20 .
where ®(x) is the probablhty mtegral while z5* = £ (zz) and z; = f(zcr) are determmed from the expressions

7 = DzZTE Ny(zgs to)]'/? (forzy= 2z8*) and zer = u)onS Ner(zg, to]t'? (for z,=27). HereD= &/x) (P, v,/
18LyTy Py, while Ngy is the number of gas and vapor molecules ina nucleus of critical size. For t* >t
at which ®(0, tx) = g + A®, i.e,, for a superheating A® of the liquid, the number of activated vaporiza-
tion centers is obtained by making the substitutions t, —~ t« and T§ — T§ + A&, Since for large v the role
of the dissolved gases in the formation of complexes of N3 + ANy moleculses is predominant, even slight
superheatings of the liquid will lead to intense vaporization, as may readily be deduced from Eq. (11).
This fact is of fundamental importance for the boiling of liquid metals in nuclear reactors {4,10].

Let us write down the system of equations determining the subsequent growth of a gas — vapor bubble
within an indentation of the rough surface, Owing to the small dimensions of the indentation we may assume
that the temperature in the bubble varies in accordance with the law Tp¢) = T+ () for t >t;. The relation-
ship between the parameters of state of the vapor in the bubble are given in simplified form by the equation

Rm ()T () I r
P — — 0 3 E +
b @ vV ve 3 ﬂ'( zo) 2 m<zsatn a4)

where ¥, is the form factor; R is the specific gas content, (This relationship was established in [13] on
the basis of the results of {14].) Using the Langmuir — Hertz — Knudsen formula, we may find the change
in the mass of vapor in the bubble:

—%’?——-nzz(t)ﬂ( )(P PD)( )" | (15)

2RT

0

where Pg is the saturated vapor pressure of the liquid; M, is the molecular weight of the vapor; 7(Py) is
the effective vaporization coefficient (also called the coefficient of condensation [15]). The quantity n was
listed in [15] for a number of substances, The boundary layer of liquid and also that of the vapor bubbles
at the instants of time preceding the onset of boiling are superheated relative to TS . Each value of T x {)
corresponds to its own saturation pressure Pg. The Pg(T x) relationship is given by the Clasius — Clapey-
ron formula [d1nPg/dT «] = (L/RT%) or the Kirchhoff —Rankine — Dupré equation

mP,=u-+ (A[C;—p)lnT*— RZYZ*’ u = const. (16)
Here L is the latent heat of vaporization of 1 g-mole of liquid; ACp is the difference between the specific
heats of the vapor and condensate, In order to close the system of equations we must establish a relation-
ship between the vapor pressure in the bubble Py, the pressure of the liquid P, and the dimensions of the
bubble, i.e., we must write down the analog of the Rayleigh equation for a bubble of conical shape. Let
us neglect the forces of surface friction associated with the motion of the liquid inside the indentation, i.e.,
consider this motion as spherically symmetrical. From the Navier — Stokes equation and the equation of
continuity, by analogy with [16], we find that

Ou ., Ou _ 1 &P (62u 26u) _-(2)2- dz

+ v u=z(—1{,z=
r dt

or? r Or

o or P, Or

Integrating the equation for u with respect to r between z and 6, making use of the Laplace relationship {20]
P(z) = P, — (20/z) + (/3) pov[(u/dr) — (@/T)]ly = ,, and assuming that P(6) = P, we obtain an analog of the
Rayleigh equation: _

2 z '
(22 - 22%) (1 —a2) — —22(1—a4z4)———2~ v—(l—a323)~ —(Pb P———;———l}\po ), 1w
in which o =67'; 2z, <z =< zy+7ry P is the kinematic viscosity of the liquid; p,is the mass of unit

volume of the liquid; 6 is the thickness of the liquid layer.

By solving the system of equations (6) and (14)-(17) we may find the laws governing the changes in
me), Pst), Ppt), T« &), zt)and the value of t; for which z#;) =z +r,. The initial conditions for these
equations take the form Ppy) = Ppo, mey) = myNy, Thitg) =T xtp), 2ty = 2y, Psty) = Pg ).

Let us consider the following stage in the evolution of the bubble from a hemisphere of radius r,
attached to the plane of the wall to a sphere with a separation radius Rgep. AS before, the decisive factor
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in the development of the bubble is the superheating of the liquid and the vapor relative to T; , as a result
of which the vapor pressure in the bubble P}, exceeds the external pressure of the liquid P. (It follows .
from [17] that even at a temperature of 120°C the Pg of the water vapour is almost twice atmospheric pres-
sure, The Pg(Tg) relationship is also given in [18].) Let us assume that

SRROTS0,
4 Word (£)

18

B )= [1 + %cos@ (2-+sin? 91)}1—7 rl Sin?@,. (18)

27

2
The quantities in the form factor ¥, are listed in [13]. The relationship between the saturation pressure
and the vapor temperature follows from the equation

L

AC, ) InT, () — e

on the assumption that Pg (Tg) = Pg(T},). The rate of evaporation of the molecules inside the bubble depends
on its wall temperature T¢¢). Since T¢(t) is different on different parts of the surface S{t) = 4rrg) of the
bubble, we have

lﬂPs-—-u—i—( (19)

dm
dt

¢ M, \v2
= [[o0as, g0 =n@ie,—n) (520", (20)
\ 2JTRTf
S(t)
The transient spatially inhomogeneous temperature distribution Ty, {r, t) in the growing bubble should be de~
termined from the heat-conduction equation for an expanding spherical region, Approximately we have Tp =
Tp ¢) where Ty, () is found from the heat balance associated with the heat {ransfer (ransfer coefficient k)
between the vapor and the surrounding liquid:
”ko(rf Tb)ds—insa)cb dTy (1)
J 3 dt
S(f) .
Here Cp is the volumetric specific heat of the vapor. If we use the gravimetric specific heat, then on the
right-hand side of (21) we must introduce the vapor density pp¢) = (3/4)[m€t)/ )], Equation (21) enables
us to make an automatic allowance for the temperature jumps between the liquid and the vapor 11,19].

Neglecting effects associated with the absence of spherical symmetry during the motion of the liquid
surrounding the bubble, and also neglecting the effect of the finite thickness of the layer of liquid, i.e.,
putting o = 0 in (17), we find, inthe same way as that employed in deriving Eq. (17), that the relationship
between the change in the radius of the bubble growing on the wall and the pressure drop AP = P, — P is
given by the equation

A | 3 [dr\® : %\ 1
(N g (s 2] L
t 2\ dt r 0o
. r 2 r 10 r
qJ(V, r, f):4\77‘——'§*'\7-—r—:—3‘—’\7—"_‘. (22)

It is usually considered that in the Rayleigh equation ¢(v, r, ) = 4v(@E/r), i.e., only the difference between
the pressure and the normal forces in liquids due to viscosity effects is taken into account, It is neverthe~
less quite clear that in order to take a proper account of viscosity we must also start from the equation of
motion in the Navier — Stokes for m and not the Euler form. This has the effect that o(v, r, T) = (10/3)v(i~/
r).

Over the range ry — Rgep the growth of the bubble is determined by the three-dimensional tempera-
ture field derived from the equation

2 2 2: 3\
ar aT+ T, aT)—HI(x,t), %:Lo, (23)
oy® 0z* cp

ot Ox?
H,(x, =L i[xg(@ =Ty .‘.39_]
Ox

with the boundary condition at the surface of the bubble

9 T I "2
{_;4~[b3_+—55 n(P,—B,) :rROT )‘ dS+Hk(T ~7;,)ds]h — o, @4)

r==r
s b

where ry,(t) is the radius of the bubble; Tf= T(r, t)] r= I.b; Ay is the thermal conductivity of the liquid. As the
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initial condition for (23) we use the function Ty = @; + T obtained from a solution of (23) at the instant t =
t), i.e., without allowing for the boundary condition on S¢). The boundary condition at x = 0 is the same
for (23) as it is inthe case of (6). As initial conditions for the remaining unknowns we use their values
obtained from a solution of the previous system of equations at t =t;.

Equations (18)-(23) allow for the evaporation of the microlayer, not only under the bubble, but also
over its whole surface. Inthis way the equations strictly and automatically incorporate the now generally
accepted hypothesis of the microlayer (see bibliography to [21]) which received experimental confirmation
in [22], Other approaches and growth models for vapor bubbles on solid walls appear in [13, 20, 23, 241,
For volumetric boiling the same question was treated in [19].
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